Solving the Polynomial Division: (x^3 - 5x^2 - 33x - 35) / (x + 3)
This article will guide you through the process of dividing the polynomial (x^3 - 5x^2 - 33x - 35) by (x + 3).
Polynomial Long Division
We will utilize the method of polynomial long division to solve this problem. Here's how it works:
-
Set up the division:
____________ x + 3 | x^3 - 5x^2 - 33x - 35
-
Focus on the leading terms: Divide the leading term of the dividend (x^3) by the leading term of the divisor (x). This gives us x^2. Write this term above the dividend.
x^2 _______ x + 3 | x^3 - 5x^2 - 33x - 35
-
Multiply the divisor by the quotient term: Multiply (x + 3) by x^2, resulting in x^3 + 3x^2. Write this product below the dividend.
x^2 _______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2
-
Subtract: Subtract the product from the dividend.
x^2 _______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x
-
Bring down the next term: Bring down the next term of the dividend (-33x).
x^2 _______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x - 35
-
Repeat the process: Now, divide the leading term of the new dividend (-8x^2) by the leading term of the divisor (x). This gives us -8x. Write this term above the dividend.
x^2 - 8x ______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x - 35
-
Multiply and subtract: Multiply (x + 3) by -8x, resulting in -8x^2 - 24x. Subtract this from the current dividend.
x^2 - 8x ______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x - 35 -8x^2 - 24x --------- -9x - 35
-
Bring down the next term: Bring down the last term of the dividend (-35).
x^2 - 8x ______ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x - 35 -8x^2 - 24x --------- -9x - 35
-
Repeat again: Divide the leading term of the new dividend (-9x) by the leading term of the divisor (x). This gives us -9. Write this term above the dividend.
x^2 - 8x - 9 ___ x + 3 | x^3 - 5x^2 - 33x - 35 x^3 + 3x^2 --------- -8x^2 - 33x - 35 -8x^2 - 24x --------- -9x - 35 -9x - 27 --------- -8
-
Final subtraction: Multiply (x + 3) by -9, resulting in -9x - 27. Subtract this from the current dividend. The remainder is -8.
Result
Therefore, we can express the division as:
(x^3 - 5x^2 - 33x - 35) / (x + 3) = x^2 - 8x - 9 - 8/(x + 3)
This means the quotient is x^2 - 8x - 9, and the remainder is -8.