Dividing Polynomials: (x^3 - 8x^2 + 19x - 15) / (x - 3)
This article will demonstrate how to divide the polynomial (x^3 - 8x^2 + 19x - 15) by the binomial (x - 3) using polynomial long division.
Polynomial Long Division
-
Set up the division: Write the dividend (x^3 - 8x^2 + 19x - 15) inside the division symbol and the divisor (x - 3) outside.
___________ x - 3 | x^3 - 8x^2 + 19x - 15
-
Divide the leading terms: Divide the leading term of the dividend (x^3) by the leading term of the divisor (x). This gives us x^2, which we write above the division symbol.
x^2 x - 3 | x^3 - 8x^2 + 19x - 15
-
Multiply the divisor by the result: Multiply the divisor (x - 3) by the result we just obtained (x^2). This gives us x^3 - 3x^2. Write this product below the dividend, aligning the terms by their exponents.
x^2 x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2
-
Subtract: Subtract the product from the dividend. Remember to change the signs of the terms being subtracted.
x^2 x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2
-
Bring down the next term: Bring down the next term of the dividend (+19x).
x^2 x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2 + 19x
-
Repeat steps 2-5: Divide the new leading term (-5x^2) by the leading term of the divisor (x). This gives us -5x. Write this above the division symbol.
x^2 - 5x x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2 + 19x -5x^2 + 15x
-
Subtract: Subtract the product (-5x^2 + 15x) from the previous result.
x^2 - 5x x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2 + 19x -5x^2 + 15x --------- 4x
-
Bring down the next term: Bring down the last term of the dividend (-15).
x^2 - 5x x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2 + 19x -5x^2 + 15x --------- 4x - 15
-
Repeat steps 2-5: Divide the new leading term (4x) by the leading term of the divisor (x). This gives us +4. Write this above the division symbol.
x^2 - 5x + 4 x - 3 | x^3 - 8x^2 + 19x - 15 x^3 - 3x^2 --------- -5x^2 + 19x -5x^2 + 15x --------- 4x - 15 4x - 12
-
Subtract: Subtract the product (4x - 12) from the previous result.
x^2 - 5x + 4
x - 3 | x^3 - 8x^2 + 19x - 15
x^3 - 3x^2
---------
-5x^2 + 19x
-5x^2 + 15x
---------
4x - 15
4x - 12
---------
-3
Result
The result of the division is: x^2 - 5x + 4 with a remainder of -3. This can also be expressed as:
(x^3 - 8x^2 + 19x - 15) / (x - 3) = x^2 - 5x + 4 - 3/(x-3)
This means that the polynomial (x^3 - 8x^2 + 19x - 15) is equal to (x - 3) multiplied by (x^2 - 5x + 4) minus 3.