Simplifying the Expression: (x^a/x^b)^1/ab*(x^b/x^c)^1/bc*(x^c/x^a)^1/ca
This article explores the simplification of the expression (x^a/x^b)^1/ab(x^b/x^c)^1/bc(x^c/x^a)^1/ca**. We will use the properties of exponents to break down the expression and arrive at a simplified form.
Using Properties of Exponents
The key to simplifying this expression lies in using the following properties of exponents:
- (x^m)^n = x^(m*n)
- x^m/x^n = x^(m-n)
Let's apply these properties step by step.
-
Simplify each term individually:
- (x^a/x^b)^1/ab = (x^(a-b))^1/ab = x^((a-b)/ab)
- (x^b/x^c)^1/bc = (x^(b-c))^1/bc = x^((b-c)/bc)
- (x^c/x^a)^1/ca = (x^(c-a))^1/ca = x^((c-a)/ca)
-
Combine the simplified terms:
- The entire expression now becomes: x^((a-b)/ab) * x^((b-c)/bc) * x^((c-a)/ca)
-
Apply the property: x^m * x^n = x^(m+n):
- This gives us: x^((a-b)/ab + (b-c)/bc + (c-a)/ca)
-
Find a common denominator for the exponents:
- The common denominator for the fractions is abc. This gives us: x^((ac(a-b) + ab(b-c) + bc(c-a))/abc)
-
Simplify the numerator:
- Expanding the numerator, we get: x^((a^2c - abc + ab^2 - abc + bc^2 - abc)/abc)
- Combining like terms: x^((a^2c + ab^2 + bc^2 - 3abc)/abc)
-
Factor out a 'c' from the numerator:
- This results in: x^(c(a^2 + b^2 + c^2 - 3ab)/abc)
-
Cancel out the 'c' in the numerator and denominator:
- This leaves us with: x^((a^2 + b^2 + c^2 - 3ab)/ab)
Conclusion
Therefore, the simplified form of the expression (x^a/x^b)^1/ab(x^b/x^c)^1/bc(x^c/x^a)^1/ca** is x^((a^2 + b^2 + c^2 - 3ab)/ab). This expression can be further analyzed or evaluated depending on the values of a, b, and c.