(x+3y-z)(2x+5y+3z)(3x-4y-2z)

3 min read Jun 16, 2024
(x+3y-z)(2x+5y+3z)(3x-4y-2z)

Expanding the Trinomial Product: (x+3y-z)(2x+5y+3z)(3x-4y-2z)

This article explores the process of expanding the given trinomial product: (x+3y-z)(2x+5y+3z)(3x-4y-2z). We will delve into the steps involved, emphasizing the use of distributive property and the systematic approach to avoid errors.

Step 1: Expanding the First Two Trinomials

Firstly, we focus on expanding the product of the first two trinomials: (x+3y-z)(2x+5y+3z). This can be done using the distributive property, multiplying each term of the first trinomial by every term in the second trinomial.

Expanding (x+3y-z)(2x+5y+3z):

  • x(2x+5y+3z) = 2x² + 5xy + 3xz
  • 3y(2x+5y+3z) = 6xy + 15y² + 9yz
  • -z(2x+5y+3z) = -2xz - 5yz - 3z²

Now, we combine the like terms:

2x² + 5xy + 3xz + 6xy + 15y² + 9yz - 2xz - 5yz - 3z² = 2x² + 11xy + 15y² + xz + 4yz - 3z²

Step 2: Expanding the Result with the Third Trinomial

We now have a simplified trinomial, 2x² + 11xy + 15y² + xz + 4yz - 3z², which needs to be multiplied by the third trinomial, (3x-4y-2z). Again, we apply the distributive property:

Expanding (2x² + 11xy + 15y² + xz + 4yz - 3z²)(3x-4y-2z):

  • 2x²(3x-4y-2z) = 6x³ - 8x²y - 4x²z
  • 11xy(3x-4y-2z) = 33x²y - 44xy² - 22xyz
  • 15y²(3x-4y-2z) = 45xy² - 60y³ - 30y²z
  • xz(3x-4y-2z) = 3x²z - 4xyz - 2xz²
  • 4yz(3x-4y-2z) = 12xyz - 16y²z - 8yz²
  • -3z²(3x-4y-2z) = -9xz² + 12yz² + 6z³

Finally, we combine the like terms:

6x³ - 8x²y - 4x²z + 33x²y - 44xy² - 22xyz + 45xy² - 60y³ - 30y²z + 3x²z - 4xyz - 2xz² + 12xyz - 16y²z - 8yz² - 9xz² + 12yz² + 6z³

= 6x³ + 25x²y + 45xy² - 60y³ - x²z - 14xyz - 48y²z - 11xz² + 4yz² + 6z³

Conclusion

Therefore, the expanded form of the trinomial product (x+3y-z)(2x+5y+3z)(3x-4y-2z) is 6x³ + 25x²y + 45xy² - 60y³ - x²z - 14xyz - 48y²z - 11xz² + 4yz² + 6z³. This step-by-step process demonstrates the methodical approach to expanding complex algebraic expressions.