Expanding the Expression: (x + y + 3)(x + y - 4)
This expression involves the product of two binomials. To expand it, we can use the distributive property, also known as FOIL (First, Outer, Inner, Last).
Step-by-step Expansion:
-
Multiply the First terms: (x + y + 3) * (x + y - 4) = x * x + ...
-
Multiply the Outer terms: (x + y + 3) * (x + y - 4) = x * x + x * (-4) + ...
-
Multiply the Inner terms: (x + y + 3) * (x + y - 4) = x * x + x * (-4) + (y + 3) * x + ...
-
Multiply the Last terms: (x + y + 3) * (x + y - 4) = x * x + x * (-4) + (y + 3) * x + (y + 3) * (-4)
-
Simplify: x^2 - 4x + xy + 3x + y^2 + 3y - 4y - 12
-
Combine like terms: x^2 + y^2 + xy - x - y - 12
Final Result
Therefore, the expanded form of (x + y + 3)(x + y - 4) is x^2 + y^2 + xy - x - y - 12.