(x4+4x3+16x−35)÷(x+5)

5 min read Jun 17, 2024
(x4+4x3+16x−35)÷(x+5)

Dividing Polynomials: (x⁴ + 4x³ + 16x - 35) ÷ (x + 5)

This article will guide you through the process of dividing the polynomial (x⁴ + 4x³ + 16x - 35) by (x + 5) using polynomial long division.

Understanding Polynomial Long Division

Polynomial long division is a method for dividing polynomials, similar to the long division method used with integers. The process involves a series of steps to find the quotient and remainder of the division.

Step-by-Step Solution

  1. Set up the division:

         ________
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35
    
  2. Divide the leading terms:

    • Divide the leading term of the dividend (x⁴) by the leading term of the divisor (x). This gives us x³.
    • Write x³ above the x³ term in the dividend.
         x³_______
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
    
  3. Multiply the divisor by the quotient term:

    • Multiply (x + 5) by x³ to get x⁴ + 5x³.
    • Write the result below the dividend.
         x³_______
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
    
  4. Subtract:

    • Subtract the product obtained in step 3 from the dividend.
    • Remember to change the signs of the terms being subtracted.
         x³_______
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
            -------
                 -x³ + 0x² 
    
  5. Bring down the next term:

    • Bring down the next term (0x²) from the dividend.
         x³_______
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
            -------
                 -x³ + 0x² + 16x
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (-x³) by the leading term of the divisor (x). This gives us -x².
    • Write -x² above the x² term in the dividend.
    • Multiply (x + 5) by -x² to get -x³ - 5x².
    • Subtract the product from the dividend.
    • Bring down the next term (16x).
         x³ - x²____
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
            -------
                 -x³ + 0x² + 16x
                 -x³ - 5x²
                 --------
                         5x² + 16x 
    
  7. Repeat steps 2-5 again:

    • Divide the leading term of the new dividend (5x²) by the leading term of the divisor (x). This gives us 5x.
    • Write 5x above the x term in the dividend.
    • Multiply (x + 5) by 5x to get 5x² + 25x.
    • Subtract the product from the dividend.
    • Bring down the last term (-35).
         x³ - x² + 5x__
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
            -------
                 -x³ + 0x² + 16x
                 -x³ - 5x²
                 --------
                         5x² + 16x - 35
                         5x² + 25x 
                         --------
                                 -9x - 35
    
  8. Final step:

    • Divide the leading term of the new dividend (-9x) by the leading term of the divisor (x). This gives us -9.
    • Write -9 above the constant term in the dividend.
    • Multiply (x + 5) by -9 to get -9x - 45.
    • Subtract the product from the dividend.
         x³ - x² + 5x - 9
    x + 5 | x⁴ + 4x³ + 0x² + 16x - 35 
            x⁴ + 5x³
            -------
                 -x³ + 0x² + 16x
                 -x³ - 5x²
                 --------
                         5x² + 16x - 35
                         5x² + 25x 
                         --------
                                 -9x - 35
                                 -9x - 45
                                 --------
                                         10
    

Therefore, the result of dividing (x⁴ + 4x³ + 16x - 35) by (x + 5) is:

(x⁴ + 4x³ + 16x - 35) ÷ (x + 5) = x³ - x² + 5x - 9 + 10/(x + 5)

The quotient is x³ - x² + 5x - 9 and the remainder is 10.

Related Post