(-x-9)(x-9)+x(x+18)

2 min read Jun 16, 2024
(-x-9)(x-9)+x(x+18)

Simplifying the Expression (-x-9)(x-9)+x(x+18)

This article will guide you through the steps of simplifying the expression (-x-9)(x-9)+x(x+18). We will use the distributive property and combining like terms to reach a simplified form.

Step 1: Expanding the Products

  • First, we expand the first product: (-x-9)(x-9)

    • Using the FOIL method (First, Outer, Inner, Last):
      • First: -x * x = -x²
      • Outer: -x * -9 = 9x
      • Inner: -9 * x = -9x
      • Last: -9 * -9 = 81
    • Combining the terms: -x² + 9x - 9x + 81 = -x² + 81
  • Next, we expand the second product: x(x+18)

    • Using the distributive property:
      • x * x = x²
      • x * 18 = 18x
    • Combining the terms: x² + 18x

Step 2: Combining Like Terms

Now we have the expression: -x² + 81 + x² + 18x

  • Notice that the -x² and x² terms cancel each other out.
  • This leaves us with 81 + 18x

Step 3: Final Simplified Form

The simplified form of the expression (-x-9)(x-9)+x(x+18) is 81 + 18x.

Related Post