Dividing Polynomials: A Step-by-Step Guide
This article will guide you through the process of dividing the polynomial 12x⁴ + 20x³ - 24x² + 20x + 35 by 3x + 5. We will utilize the long division method for this.
Setting Up the Long Division
-
Arrange the terms: Write the dividend (12x⁴ + 20x³ - 24x² + 20x + 35) inside the long division symbol and the divisor (3x + 5) outside. Make sure the terms are arranged in descending order of their exponents.
________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35
Performing the Division
-
Divide the leading terms: Divide the leading term of the dividend (12x⁴) by the leading term of the divisor (3x). This gives us 4x³. Write this result above the dividend, aligned with the x³ term.
4x³ ________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35
-
Multiply and subtract: Multiply the quotient (4x³) by the divisor (3x + 5) and write the result below the dividend. Then, subtract this product from the dividend.
4x³ ________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35 -(12x⁴ + 20x³) ------------------- -24x² + 20x + 35
-
Bring down the next term: Bring down the next term of the dividend (-24x²) to the bottom row.
4x³ ________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35 -(12x⁴ + 20x³) ------------------- -24x² + 20x + 35
-
Repeat the process: Repeat steps 2-4 until there are no more terms in the dividend to bring down.
4x³ - 8x ________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35 -(12x⁴ + 20x³) ------------------- -24x² + 20x + 35 -(-24x² - 40x) ------------------- 60x + 35
4x³ - 8x + 20 ________________________ 3x + 5 | 12x⁴ + 20x³ - 24x² + 20x + 35 -(12x⁴ + 20x³) ------------------- -24x² + 20x + 35 -(-24x² - 40x) ------------------- 60x + 35 -(60x + 100) ------------------- -65
The Result
Therefore, the quotient of (12x⁴ + 20x³ - 24x² + 20x + 35) divided by (3x + 5) is 4x³ - 8x + 20 with a remainder of -65. This can be expressed as:
12x⁴ + 20x³ - 24x² + 20x + 35 = (3x + 5)(4x³ - 8x + 20) - 65