(2x^-3y^-2)^5/(6x^-1 Y^-8)^2

2 min read Jun 16, 2024
(2x^-3y^-2)^5/(6x^-1 Y^-8)^2

Simplifying Algebraic Expressions: (2x^-3y^-2)^5/(6x^-1 y^-8)^2

This article will guide you through the process of simplifying the algebraic expression: (2x^-3y^-2)^5/(6x^-1 y^-8)^2. Let's break down the steps involved.

Understanding the Rules

To simplify this expression, we'll use the following rules of exponents:

  • Product of Powers: x^m * x^n = x^(m+n)
  • Quotient of Powers: x^m / x^n = x^(m-n)
  • Power of a Power: (x^m)^n = x^(m*n)
  • Power of a Product: (x*y)^n = x^n * y^n
  • Power of a Quotient: (x/y)^n = x^n / y^n

Step-by-Step Simplification

  1. Apply the Power of a Power rule:

    • (2x^-3y^-2)^5 = 2^5 * x^(-35) * y^(-25) = 32x^-15y^-10
    • (6x^-1y^-8)^2 = 6^2 * x^(-12) * y^(-82) = 36x^-2y^-16
  2. Substitute the simplified terms back into the original expression:

    • (32x^-15y^-10) / (36x^-2y^-16)
  3. Apply the Quotient of Powers rule:

    • 32/36 * x^(-15 - (-2)) * y^(-10 - (-16))
  4. Simplify the coefficients and exponents:

    • (8/9) * x^-13 * y^6
  5. Rewrite negative exponents using the rule x^-n = 1/x^n:

    • (8/9) * (1/x^13) * y^6
  6. Combine terms:

    • 8y^6 / (9x^13)

Final Result

The simplified form of the expression (2x^-3y^-2)^5/(6x^-1 y^-8)^2 is 8y^6 / (9x^13).

Related Post


Featured Posts