(2x^3+3x^2+5x+9)/(x-20)

4 min read Jun 16, 2024
(2x^3+3x^2+5x+9)/(x-20)

Dividing Polynomials: A Step-by-Step Guide

This article will guide you through the process of dividing the polynomial 2x³ + 3x² + 5x + 9 by (x - 20) using polynomial long division.

Understanding Polynomial Long Division

Polynomial long division is a method used to divide polynomials, similar to the long division method used for numbers. It involves a series of steps to find the quotient and remainder of the division.

Step-by-Step Process

  1. Set up the division problem:

        ___________
    x-20 | 2x³ + 3x² + 5x + 9 
    
  2. Divide the leading term of the dividend (2x³) by the leading term of the divisor (x):

    • 2x³ / x = 2x²
    • Write 2x² above the dividend.
        2x²________
    x-20 | 2x³ + 3x² + 5x + 9 
    
  3. Multiply the divisor (x - 20) by the term you just wrote (2x²):

    • (x - 20) * 2x² = 2x³ - 40x²
  4. Subtract the result from the dividend:

        2x²________
    x-20 | 2x³ + 3x² + 5x + 9 
           -(2x³ - 40x²)
           -----------
                  43x² + 5x
    
  5. Bring down the next term of the dividend (5x):

        2x²________
    x-20 | 2x³ + 3x² + 5x + 9 
           -(2x³ - 40x²)
           -----------
                  43x² + 5x 
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (43x²) by the leading term of the divisor (x):
      • 43x² / x = 43x
      • Write 43x above the dividend.
    • Multiply the divisor (x - 20) by 43x:
      • (x - 20) * 43x = 43x² - 860x
    • Subtract the result:
       2x² + 43x_____
      

    x-20 | 2x³ + 3x² + 5x + 9 -(2x³ - 40x²) ----------- 43x² + 5x -(43x² - 860x) ------------- 865x + 9

    * Bring down the next term (9):
    
    2x² + 43x_____
    

    x-20 | 2x³ + 3x² + 5x + 9 -(2x³ - 40x²) ----------- 43x² + 5x -(43x² - 860x) ------------- 865x + 9

    
    
  7. Repeat steps 2-5 again:

    • Divide the leading term of the new dividend (865x) by the leading term of the divisor (x):
      • 865x / x = 865
      • Write 865 above the dividend.
    • Multiply the divisor (x - 20) by 865:
      • (x - 20) * 865 = 865x - 17300
    • Subtract the result:
       2x² + 43x + 865___
      

    x-20 | 2x³ + 3x² + 5x + 9 -(2x³ - 40x²) ----------- 43x² + 5x -(43x² - 860x) ------------- 865x + 9 -(865x - 17300) ------------- 17309

    
    

Conclusion

Therefore, the result of dividing 2x³ + 3x² + 5x + 9 by (x - 20) is:

Quotient: 2x² + 43x + 865 Remainder: 17309

We can express this result as:

(2x³ + 3x² + 5x + 9) / (x - 20) = 2x² + 43x + 865 + 17309 / (x - 20)

Related Post