Dividing Polynomials: (2x^3 + 5x^2 + 9) / (x + 3)
This article will walk through the process of dividing the polynomial 2x^3 + 5x^2 + 9 by the binomial x + 3. We will utilize the long division method to achieve this.
Long Division Steps
-
Set up the division problem:
__________ x + 3 | 2x^3 + 5x^2 + 0x + 9
- Notice that we've added a placeholder term 0x for the x term, as it was not explicitly present in the original polynomial.
-
Divide the leading terms:
-
(2x^3) / (x) = 2x^2
-
Write this result above the x^2 term in the quotient:
2x^2 __________ x + 3 | 2x^3 + 5x^2 + 0x + 9
-
-
Multiply the divisor by the result:
-
(2x^2) * (x + 3) = 2x^3 + 6x^2
-
Write this result below the dividend:
2x^2 __________ x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2
-
-
Subtract:
- Subtract the terms vertically:
2x^2 __________ x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x
-
Bring down the next term:
- Bring down the 0x term from the dividend:
2x^2 __________ x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9
-
Repeat steps 2-5:
-
Divide the leading term of the new dividend (-x^2) by the leading term of the divisor (x):
- (-x^2) / (x) = -x
-
Write the result above the x term in the quotient:
2x^2 - x __________
x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x
* Multiply the divisor by the new result: * **(-x) * (x + 3) = -x^2 - 3x** * Subtract:
2x^2 - x __________
x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9
* Bring down the last term:
2x^2 - x __________
x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9
-
-
Final step:
-
Divide the new leading term (3x) by the leading term of the divisor (x):
- (3x) / (x) = 3
-
Write the result above the constant term in the quotient:
2x^2 - x + 3 __________
x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9 3x + 9
* Multiply the divisor by the result: * **(3) * (x + 3) = 3x + 9** * Subtract:
2x^2 - x + 3 __________
x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9 3x + 9 --------- 0
-
Conclusion
Therefore, the result of dividing (2x^3 + 5x^2 + 9) by (x + 3) is 2x^2 - x + 3. This means the original polynomial can be rewritten as: (x + 3)(2x^2 - x + 3).