(2x^3+5x^2+9)/(x+3)

5 min read Jun 16, 2024
(2x^3+5x^2+9)/(x+3)

Dividing Polynomials: (2x^3 + 5x^2 + 9) / (x + 3)

This article will walk through the process of dividing the polynomial 2x^3 + 5x^2 + 9 by the binomial x + 3. We will utilize the long division method to achieve this.

Long Division Steps

  1. Set up the division problem:

          __________
    x + 3 | 2x^3 + 5x^2 + 0x + 9 
    
    • Notice that we've added a placeholder term 0x for the x term, as it was not explicitly present in the original polynomial.
  2. Divide the leading terms:

    • (2x^3) / (x) = 2x^2

    • Write this result above the x^2 term in the quotient:

          2x^2     
          __________
    x + 3 | 2x^3 + 5x^2 + 0x + 9 
    
  3. Multiply the divisor by the result:

    • (2x^2) * (x + 3) = 2x^3 + 6x^2

    • Write this result below the dividend:

          2x^2     
          __________
    x + 3 | 2x^3 + 5x^2 + 0x + 9 
           2x^3 + 6x^2
    
  4. Subtract:

    • Subtract the terms vertically:
          2x^2     
          __________
    x + 3 | 2x^3 + 5x^2 + 0x + 9 
           2x^3 + 6x^2
           ---------
                 -x^2  + 0x 
    
  5. Bring down the next term:

    • Bring down the 0x term from the dividend:
          2x^2     
          __________
    x + 3 | 2x^3 + 5x^2 + 0x + 9 
           2x^3 + 6x^2
           ---------
                 -x^2  + 0x + 9 
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (-x^2) by the leading term of the divisor (x):

      • (-x^2) / (x) = -x
    • Write the result above the x term in the quotient:

          2x^2 - x      
          __________
      

    x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x

    
    * Multiply the divisor by the new result:
    
    * **(-x) * (x + 3) = -x^2 - 3x**
    
    * Subtract:
    
    
       2x^2 - x      
       __________
    

    x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9

    
    * Bring down the last term:
    
    
       2x^2 - x      
       __________
    

    x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9

    
    
  7. Final step:

    • Divide the new leading term (3x) by the leading term of the divisor (x):

      • (3x) / (x) = 3
    • Write the result above the constant term in the quotient:

          2x^2 - x + 3     
          __________
      

    x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9 3x + 9

    
    * Multiply the divisor by the result:
    
    * **(3) * (x + 3) = 3x + 9**
    
    * Subtract:
    
    
       2x^2 - x + 3     
       __________
    

    x + 3 | 2x^3 + 5x^2 + 0x + 9 2x^3 + 6x^2 --------- -x^2 + 0x + 9 -x^2 - 3x --------- 3x + 9 3x + 9 --------- 0

    
    

Conclusion

Therefore, the result of dividing (2x^3 + 5x^2 + 9) by (x + 3) is 2x^2 - x + 3. This means the original polynomial can be rewritten as: (x + 3)(2x^2 - x + 3).

Featured Posts