Polynomial Long Division: (2x⁴ + 4x³ + 2x² + 8x + 8) ÷ (x + 2)
This article will demonstrate how to perform polynomial long division to find the quotient and remainder of the expression (2x⁴ + 4x³ + 2x² + 8x + 8) ÷ (x + 2).
Polynomial Long Division Steps
-
Set up the division: Write the dividend (2x⁴ + 4x³ + 2x² + 8x + 8) inside the division symbol and the divisor (x + 2) outside.
____________ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8
-
Divide the leading terms: Divide the leading term of the dividend (2x⁴) by the leading term of the divisor (x), which gives 2x³. Write this result above the division symbol.
2x³_________ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8
-
Multiply the divisor by the result: Multiply the divisor (x + 2) by the result (2x³), which gives 2x⁴ + 4x³. Write this result below the dividend.
2x³_________ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³
-
Subtract: Subtract the result from the dividend.
2x³_________ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8
-
Bring down the next term: Bring down the next term of the dividend (8x).
2x³_________ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8
-
Repeat steps 2-5: Now we divide the leading term of the new dividend (2x²) by the leading term of the divisor (x), which gives 2x. Write this result above the division symbol.
2x³ + 2x______ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8 2x² + 4x
Multiply the divisor (x + 2) by the result (2x) to get 2x² + 4x. Subtract this from the previous result.
2x³ + 2x______ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8 2x² + 4x _______ 4x + 8
Bring down the next term (8).
2x³ + 2x______ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8 2x² + 4x _______ 4x + 8
-
Final step: Divide the leading term of the new dividend (4x) by the leading term of the divisor (x), which gives 4. Write this above the division symbol.
2x³ + 2x + 4___ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8 2x² + 4x _______ 4x + 8 4x + 8
Multiply the divisor (x + 2) by the result (4), which gives 4x + 8. Subtract this from the previous result.
2x³ + 2x + 4___ x + 2 | 2x⁴ + 4x³ + 2x² + 8x + 8 2x⁴ + 4x³ _________ 2x² + 8x + 8 2x² + 4x _______ 4x + 8 4x + 8 _____ 0
Result
Therefore, (2x⁴ + 4x³ + 2x² + 8x + 8) ÷ (x + 2) = 2x³ + 2x + 4, with a remainder of 0.