Polynomial Long Division: (3x⁴ – 4x² + 8x – 1) ÷ (x – 2)
This article will demonstrate how to perform polynomial long division for the expression (3x⁴ – 4x² + 8x – 1) ÷ (x – 2).
Step 1: Setting up the Division
Begin by setting up the division problem like a traditional long division problem:
____________
x - 2 | 3x⁴ - 4x² + 8x - 1
Step 2: Divide the Leading Terms
- Divide the leading term of the dividend (3x⁴) by the leading term of the divisor (x). This gives us 3x³.
- Write this result (3x³) above the dividend.
3x³ _________
x - 2 | 3x⁴ - 4x² + 8x - 1
Step 3: Multiply and Subtract
- Multiply the divisor (x - 2) by the term we just wrote (3x³): (x - 2) * (3x³) = 3x⁴ - 6x³.
- Write this result below the dividend and subtract.
3x³ _________
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x²
Step 4: Bring Down the Next Term
- Bring down the next term from the dividend (8x):
3x³ _________
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
Step 5: Repeat Steps 2-4
- Divide the new leading term (2x³) by the leading term of the divisor (x): 2x³ / x = 2x².
- Write this result above the dividend:
3x³ + 2x² _________
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
- Multiply the divisor by the new term (2x²): (x - 2) * (2x²) = 2x³ - 4x².
- Write this result below the previous line and subtract:
3x³ + 2x² _________
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
-(2x³ - 4x²)
_________
8x - 1
Step 6: Repeat Again
- Bring down the next term from the dividend (-1):
3x³ + 2x² _________
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
-(2x³ - 4x²)
_________
8x - 1
- Divide the new leading term (8x) by the leading term of the divisor (x): 8x / x = 8.
- Write this result above the dividend:
3x³ + 2x² + 8 _______
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
-(2x³ - 4x²)
_________
8x - 1
- Multiply the divisor by the new term (8): (x - 2) * (8) = 8x - 16.
- Write this result below the previous line and subtract:
3x³ + 2x² + 8 _______
x - 2 | 3x⁴ - 4x² + 8x - 1
-(3x⁴ - 6x³)
_________
2x³ - 4x² + 8x
-(2x³ - 4x²)
_________
8x - 1
-(8x - 16)
_________
15
Step 7: The Result
We have reached a point where the degree of the remainder (15) is less than the degree of the divisor (x - 2). This means we have completed the division.
Therefore, the result of (3x⁴ – 4x² + 8x – 1) ÷ (x – 2) is 3x³ + 2x² + 8 + 15/(x - 2).