Simplifying Expressions with Negative Exponents
This article will guide you through simplifying the expression (a^2b^3)^-2(a^5b^4)^-3.
Understanding the Rules
Before we begin, let's refresh our memory on some key exponent rules:
- Power of a product: (ab)^n = a^n * b^n
- Power of a power: (a^m)^n = a^(m*n)
- Negative exponent: a^-n = 1/a^n
Applying the Rules
-
Apply the power of a power rule:
- (a^2b^3)^-2 = a^(2*-2) * b^(3*-2) = a^-4 * b^-6
- (a^5b^4)^-3 = a^(5*-3) * b^(4*-3) = a^-15 * b^-12
-
Combine the results:
- a^-4 * b^-6 * a^-15 * b^-12
-
Apply the product of powers rule:
- a^(-4-15) * b^(-6-12) = a^-19 * b^-18
-
Apply the negative exponent rule:
- 1/a^19 * 1/b^18
-
Simplify further:
- 1 / (a^19 * b^18)
Conclusion
Therefore, the simplified form of (a^2b^3)^-2(a^5b^4)^-3 is 1 / (a^19 * b^18).