Finding the Value of a³ - b³
Given that (a - b) = 3 and ab = 5, we can find the value of a³ - b³ using the following steps:
Key Algebraic Identities:
We'll use the following algebraic identity to simplify our problem:
- a³ - b³ = (a - b)(a² + ab + b²)
Step 1: Find a² + ab + b²
- Square the equation (a - b) = 3: (a - b)² = 3² a² - 2ab + b² = 9
- Add 3ab to both sides: a² - 2ab + b² + 3ab = 9 + 3ab a² + ab + b² = 9 + 3ab
- Substitute the value of ab = 5: a² + ab + b² = 9 + 3(5) a² + ab + b² = 24
Step 2: Substitute Values into the Identity
Now we have the values for (a - b) and (a² + ab + b²):
- a - b = 3
- a² + ab + b² = 24
Substitute these values into the identity:
a³ - b³ = (a - b)(a² + ab + b²) a³ - b³ = (3)(24) a³ - b³ = 72