Finding the Value of a³ - b³
Given that (a - b) = 3 and ab = 5, we can find the value of a³ - b³.
Using the Difference of Cubes Formula
The difference of cubes formula states:
a³ - b³ = (a - b)(a² + ab + b²)
We already know (a - b) = 3. Let's find (a² + ab + b²) using the information provided:
-
Square the equation (a - b) = 3: (a - b)² = 3² a² - 2ab + b² = 9
-
Add 3ab to both sides: a² - 2ab + b² + 3ab = 9 + 3ab a² + ab + b² = 9 + 3ab
-
Substitute ab = 5: a² + ab + b² = 9 + 3(5) a² + ab + b² = 24
Now we can plug the values into the difference of cubes formula:
a³ - b³ = (a - b)(a² + ab + b²) a³ - b³ = (3)(24) a³ - b³ = 72
Therefore, the value of a³ - b³ is 72.