(x^2-y)(3x+y^2)-(6x^4y-2xy^4) 2xy

2 min read Jun 17, 2024
(x^2-y)(3x+y^2)-(6x^4y-2xy^4) 2xy

Simplifying the Expression (x^2-y)(3x+y^2)-(6x^4y-2xy^4) 2xy

This article will guide you through simplifying the algebraic expression: (x^2-y)(3x+y^2)-(6x^4y-2xy^4) 2xy.

Step 1: Expand the first product

Begin by expanding the product of the two binomials: (x^2-y)(3x+y^2)

Using the FOIL method (First, Outer, Inner, Last), we get:

  • First: x^2 * 3x = 3x^3
  • Outer: x^2 * y^2 = x^2y^2
  • Inner: -y * 3x = -3xy
  • Last: -y * y^2 = -y^3

Combining these terms, we have: (x^2-y)(3x+y^2) = 3x^3 + x^2y^2 - 3xy - y^3

Step 2: Distribute the second product

Next, we distribute the 2xy term to the expression within the parentheses:

(6x^4y - 2xy^4) 2xy = 12x^5y^2 - 4x^2y^5

Step 3: Combine the expanded terms

Now, we combine the expanded terms from steps 1 and 2:

3x^3 + x^2y^2 - 3xy - y^3 - (12x^5y^2 - 4x^2y^5)

Distributing the negative sign, we get:

3x^3 + x^2y^2 - 3xy - y^3 - 12x^5y^2 + 4x^2y^5

Step 4: Rearrange the terms

Rearrange the terms in descending order of their exponents:

-12x^5y^2 + 4x^2y^5 + 3x^3 + x^2y^2 - 3xy - y^3

Final Result

Therefore, the simplified form of the given expression is:

-12x^5y^2 + 4x^2y^5 + 3x^3 + x^2y^2 - 3xy - y^3