Dividing Polynomials: A Step-by-Step Guide
This article will walk you through the process of dividing the polynomial (x^4 - 2x^3 - 29x^2 - 43x + 8) by (x - 7) using polynomial long division.
Step 1: Setting Up the Division
Begin by setting up the long division problem:
________
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
Step 2: Dividing the Leading Terms
- Divide the leading term of the dividend (x^4) by the leading term of the divisor (x). This gives us x^3.
- Write x^3 above the x^3 term in the dividend.
x^3
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
Step 3: Multiply and Subtract
- Multiply the divisor (x - 7) by the term we just wrote above the line (x^3). This gives us x^4 - 7x^3.
- Write this result below the dividend and subtract.
x^3
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
Step 4: Repeat the Process
- Bring down the next term of the dividend (-29x^2).
- Divide the leading term of the new dividend (5x^3) by the leading term of the divisor (x). This gives us 5x^2.
- Write 5x^2 above the line.
x^3 + 5x^2
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
- Multiply the divisor (x - 7) by 5x^2 to get 5x^3 - 35x^2.
- Subtract this result from the current line.
x^3 + 5x^2
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
-(5x^3 - 35x^2)
------------------
6x^2 - 43x
Step 5: Continue the Division
- Bring down the next term of the dividend (-43x).
- Divide the leading term of the new dividend (6x^2) by the leading term of the divisor (x). This gives us 6x.
- Write 6x above the line.
x^3 + 5x^2 + 6x
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
-(5x^3 - 35x^2)
------------------
6x^2 - 43x
- Multiply the divisor (x - 7) by 6x to get 6x^2 - 42x.
- Subtract this result from the current line.
x^3 + 5x^2 + 6x
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
-(5x^3 - 35x^2)
------------------
6x^2 - 43x
-(6x^2 - 42x)
------------------
-x + 8
Step 6: Final Steps
- Bring down the last term of the dividend (8).
- Divide the leading term of the new dividend (-x) by the leading term of the divisor (x). This gives us -1.
- Write -1 above the line.
x^3 + 5x^2 + 6x - 1
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
-(5x^3 - 35x^2)
------------------
6x^2 - 43x
-(6x^2 - 42x)
------------------
-x + 8
- Multiply the divisor (x - 7) by -1 to get -x + 7.
- Subtract this result from the current line.
x^3 + 5x^2 + 6x - 1
x - 7 | x^4 - 2x^3 - 29x^2 - 43x + 8
-(x^4 - 7x^3)
------------------
5x^3 - 29x^2
-(5x^3 - 35x^2)
------------------
6x^2 - 43x
-(6x^2 - 42x)
------------------
-x + 8
-(-x + 7)
------------
1
Solution
Therefore, the result of dividing (x^4 - 2x^3 - 29x^2 - 43x + 8) by (x - 7) is:
(x^3 + 5x^2 + 6x - 1) with a remainder of 1.
This can also be written as:
(x^4 - 2x^3 - 29x^2 - 43x + 8) / (x - 7) = (x^3 + 5x^2 + 6x - 1) + 1/(x - 7)