(3x^2+4x-7)(x-2)

2 min read Jun 16, 2024
(3x^2+4x-7)(x-2)

Expanding the Expression: (3x^2 + 4x - 7)(x - 2)

This expression represents the product of two polynomials: a quadratic trinomial (3x^2 + 4x - 7) and a linear binomial (x - 2). To expand this, we can use the distributive property or FOIL method.

Using the Distributive Property

  • Step 1: Distribute the first term of the binomial (x) to each term in the trinomial.
    • x * (3x^2 + 4x - 7) = 3x^3 + 4x^2 - 7x
  • Step 2: Distribute the second term of the binomial (-2) to each term in the trinomial.
    • -2 * (3x^2 + 4x - 7) = -6x^2 - 8x + 14
  • Step 3: Combine the results from steps 1 and 2.
    • 3x^3 + 4x^2 - 7x - 6x^2 - 8x + 14
  • Step 4: Simplify by combining like terms.
    • 3x^3 - 2x^2 - 15x + 14

Using the FOIL Method

  • F: Multiply the first terms of each binomial: (3x^2)(x) = 3x^3
  • O: Multiply the outer terms of each binomial: (3x^2)(-2) = -6x^2
  • I: Multiply the inner terms of each binomial: (4x)(x) = 4x^2
  • L: Multiply the last terms of each binomial: (4x)(-2) = -8x
  • Combine: 3x^3 - 6x^2 + 4x^2 - 8x - 7x + 14
  • Simplify: 3x^3 - 2x^2 - 15x + 14

The Expanded Form

Therefore, the expanded form of (3x^2 + 4x - 7)(x - 2) is 3x^3 - 2x^2 - 15x + 14.